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The discrete ordinate (DO) method for solving the linear intcgro-differential equations of 
kinetic theory is investigated and other numerical methods for solving this type of problem are 
reviewed. It is pointed out that the DO method can be regarded as a special case of the 
method of weighted residuals. An efficient method for calculating the matrix O,, representing 
the differential operator is described, and it is shown that the method does not necessarrly 
require the use of the nodes of a Gaussian quadrature. ‘CJ 1991 Academic Press, Inc. 

1. INTRODUCTION 

A considerable amount of research has gone into solving the linear, integro-dif- 
ferential Boltzmann equation that governs the motion of trace amounts of charged 
particles in a neutral gas under the influence of a uniform electrostatic field [ 1-3 3. 
For light particles (electrons, positrons, muons) the Boltzmann equation can, ‘W a 
good approximation, be decomposed into a chain of coupled differential equations 
whose solution can be sought through standard numerical procedures, furnishing 
the velocity distribution function at discrete points in the mesh chosen. In general, 
however, no such simplifications arise for ions, and the velocity distribution func- 
tion is usually expanded in a series of known basis functions, of which the 
functions are perhaps the best known. In this case, the Boltzmann equation is 
thereby decomposed into an infinite set of algebraic equations for the expansion 
coefficients. This procedure has been successfully applied to both ions [4-G] and 
the lighter charged species [7-91 mentioned above. The question naturally arises as 
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to the comparable efficiency of the two seemingly quite different approaches, 
providing respectively discrete and continuous values of the distribution function. It 
seems timely to address this question. given the considerable advances that have 
been made in recent times in both directions. 

Of particular interest is the work of Shizgal and collaborators [l&17], who have 
developed a “discrete ordinate (DO) method” for application to a wide variety of 
physical problems, not just the kinetic theory of gases. Their work is based upon 
representation of the derivative operator on a discrete mesh of points generated by 
gaussian quadrature. It is pointed out in this paper that in this connection: 

(i) Both the DO and expansion methods can be regarded as special cases of 
one general procedure-the method of weighted residuals (MWR); 

(ii) The results of Shizgal et al. can be obtained directly from the Gaussian 
quadrature, without first proceeding through a representation in a polynomial 
basis. The numerical differentiation algorithm of the DO method is in any case sub- 
sumed by the well-known Lagrangian differentiation formula for unequally spaced 
abscissa. 

(iii) The requirement that the nodes used in the DO method be the roots of 
an orthogonal polynomial is not essential. This allows a more general choice of 
nodes. 

The first and third observations have both theoretical and practical implications, 
while the second is of some practical significance, for it facilitates more rapid 
computation than has hitherto been possible. 

There are other numerical methods that attempt to solve the Boltzmann equa- 
tion, such as the finite-difference techniques of Segur and co-workers [18-201 and 
the iterative methods of Kleban and Davis [21]. Some aspects of these methods 
could also be formulated in terms of the discussion given in Section 2, where we are 
concerned with procedures that involve an explicit expansion of the distribution 
function in terms of known functions. For example, Ref. [ 181 employs the method 
of weighted residuals with piecewise linear trial functions in velocity space. Such 
methods may be classified under the general heading of the method of weighted 
residuals [ 221. 

2. REVIEW OF SOME STANDARD PROCEDURES 

The prototype equation for our discussion is the one-dimensional operator 
equation 

M-y) = g(x), (1) 

in which the function g(x) and the linear operator L are defined for all x in some 
interval I, and f is the unknown function. 
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(a) The Merhod qf Weighted Residuals 

Solution of Eq. (1) by the MWR is based on two choices, as follows: 

(i ) Choose some trial functions r,(x), 0 < i G N - 1 and assume that they are 
sufficiently differentiable and well behaved, for all x contained in I; and that fiz:) 
is well approximated by the expansion 

/3 i -/ 
i=O 

The problem thus has become one of determining the expansion coefficients ,c such 
that 

:v- 1 
1 fiLXi(X) 2: g(x). (3j 

i=o 

Some guidance as to what trial functions should be used can usually be obtained 
from a careful examination of the specific problem. For example, it may be 
zonvenient to choose the trial functions to be the eigenfunctions of L or the eigen- 
functions of an operator similar to L. If L is a differential operator, then the trial 
functions should satisfy the same boundary conditions asS(-u). As another exam 
more suited to solution of the Boltzmann equation for gaseous ion transport, 
physical arguments about the behaviour of f(x) throughout I may indicate some 
reasonable “zero-order” estimate of f(x), G(x) say. Then we should construer the 
first N elements of the complete set of orthonormal polynomials #,(Y) from the 
equation 

and use 

where the integral in (4a) is understood to be a definite integral over the interval I. 

(ii) Choose some weight functions Ai and require that each of the 
weighted residuals 

be zero for 0 < j < N- 1. The problem thus has become one of determining the 
expansion coefficients f, such that 

5X19? l-15 
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where 

L,,= j- A,(x) LTi(x) dx = j Ti(x) L+Aj(x) ds, (7) 

g,=/A,(x)g(x)dMx (8) 

and where Eq. (7) serves to define the adjoint operator L+. The weight functions 
can be chosen in many ways, with each choice corresponding to a different method 
for using the MWR. Since different names are generally used for these different 
methods, their commonality is often overlooked by mathematical physicists. It is 
also often overlooked that “all comparisons of different methods indicate that 
similar results are achieved, especially for higher approximations” [22], which 
means higher values of N. References to such comparisons for solving differential 
equations are given in Ref. [22]. 

The moment method is a MWR in which 

A,(x) = xj (9) 

and the Ti are given by (4). It has been advocated by Skullerud and co-workers 
[l, 231 for solving the Boltzmann equation for gaseous ion transport. Most other 
work [l-3] in this field has been based on the Galerkin method, a MWR in which 

Aj(x)=4ji(X), (10) 

with (4) applying again. (The distinction between a moment method and a 
Galerkin method has not been made in most previous work.) Finally, we note that 
many other special forms of the MWR are known [22]. 
The present work is especially concerned with the collocation method, a MWR in 
which the weighting functions are Dirac delta functions, 

Ai(X) = 6(x - Xj), O<i<N-1, (11) 

where the xj are N abscissas chosen to suit the particular problem. The delta func- 
tion simplifies Eqs. (6)-(g), and the problem thus becomes one of determining the 
expansion coefficients fi such that 

N- I 

c Ljifi= g(xj), OdjdN- 1 (12) 
i=O 

and 

Lji= [LTi(*x)lx=.x,. (13) 

Note that we are still free to choose the trial functions and the collocation points, 
as long as they are contained in I. When the collocation points -xj are chosen to be 
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the N roots of a particular orthogonal polynomial #,V(x), of degree IV, we speak of 
this MWR as being an orthogonal collocation method. 

i’b j Gaussian Qlladrature 

We now briefly review Gaussian quadrature [24-J. Let S(x) be any positive- 
definite, infinitely-differentiable function on the interval I for which the quantitres 

s C(x) X’I dY i 14) 

exist and are finite, positive numbers for all non-negative values of n. Let ($i(x‘ei 
be the corresponding, complete, unique set of orthonormal polynomials constructed 
such that 

i G(x) cjj(X) $/JX) dx = 6, (15) 

and such that the highest power of x in ii(x) has a positive coefficient: these 
polynomials must satisfy a three-term recurrence relation, the Christoffel-~a~bo~x 
identity, and Rodrigues’ formula [24]. Further, Bet (xi> be the set of -N real, 
distinct roots of dN(x) that are contained in I. i,e., 

dNtxi) = O3 O<i<A-1. (16) 

The set (xi) is also the set of eigenvalues of the Jacobi matrix formed from the 
coefficients in the three-term recurrence relation [24]. Then the weights of the 
corresponding Gaussian quadrature are 

(17) 

Thus for any function f(x) defined in I we make the approximation that 

This approximation is exact if f(x) E Szavv- ’ (S” is the set of polynomials of degree 
less than or equal to N), and it becomes more accurate for any function as :d 
increases [24]. We note in particular that for j, k < M- 1, Eq. ( 15) is 

the discrete version of the orthogonality relation 
We now introduce a matrix T, important in the subsequent discussions 

concerning transformations, which is defined as 
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Then Eq. (19) becomes 
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(21) 
i=O 

indicating that T is a unitary matrix. 

(c) Numerical Differentiatiorz-Finite Differences 

The derivative operator D = d/dx is nonlocal, i.e., dfldx depends upon values of 
f(x) at points other than the one under consideration. The discrete analogue of this 
is that the matrix D,, representing the operator, induces a linear transformation 
when it acts upon fj= f(xj), as indicated in Eq. (23) below. 

Perhaps the most commonly used numerical differentiation algorithms involve 
equally-spaced abscissas xi, i.e., a mesh generated by 

xi = xi- 1 + 12, i= 1, 2, . . . . N- 1. 

If fi denote the corresponding ordinates, then one has, for example, the central 
difference formula 

(Df)i=(g) , _ 
x - x, 

=A+ 1 -.f- I+ 

2h 
0@2) 3 (22) 

or, in general, 
.v- I 

(Df)i= c D,fi+EjN!, (23) 
j=O 

where D, denotes the appropriate matrix representation and EiN’ is an error term. 
For the central differencing method, 

D~=~.(6,,i+l-s,i-l). (24) 

Forward and backward differencing methods have similar representations. There is, 
however, no need to restrict such analysis to equally-spaced abscissa and, in fact, 
in many problems in physics it may be highly undesirable to do so. Adaptive 
methods, for example, concentrate mesh points in regions of rapidly varyingf(x). 
We consider below the case where the xi are the nodes of a Gaussian quadrature 
defined by (16). 

(d) Numerical Differentation and the Lagrangian Differentiation Formula 

Lagrange’s interpolation formula for the set of points {(xi,f(xj)), i= 0, 1, 2, . . . 
N-l} is [40] 

N-l 

f(x) = 1 l,(x)f(xi) + RN(x), 
i=O 

(25) 
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where the Lagrange polynomial 

/j(X) = 
~x-.u,)(x-xxI)~‘~(x-~si~~)(x-xxi,~j . ..(x-x.-,) 

(~~-X~)(Xi-~~I)~~~(ZCi-xi~~)(~Yi-.~i+1)..’j.Yi--Y‘~~.1) 
(25) 

is a polynomial of degree N- 1 and has the property 

lj(Xj) = 6,. i27 \ 1 

The (xi> may be any set of points on I, provided xi # xj for i i,j. Now if the xi are 
roots of the polynomial dN(x), then 

$,(x) = k,v(~-~O)(~-~l). . . (x-x~~~)(x-x~)(x--x:,~). . . (X-X,-,) 

where Ic,~ is the coefficient of xN. 
Thus it follows that 

#N(X) 
‘i(x)=(.w-xij d;,(xj) 

The remainder term in (25) is [40] 

izs: 

where x0 < l c .x.~- I and f (NJ denotes the Nth derivative of j(x). If f(x) E S” ~ 1\ 
then RN(x) = 0. 

Differentiating Eq. (25) w.r.t. x gives 

and, setting x = xi, we have 

(Df)i= C I(i(Xi)f(-Yj) + R:sY(xil. (31) 
j=O 

Comparing with Eq. (23), it follows that 

D,= lJ(x,), 
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and applying L’Hopital’s rule to Eq. (28), we obtain 

(32) 

as the matrix representing d/dx on a mesh specified by the roots of dN(x). 
The error term in Eq. (31) is 

(33) 

The value of 5 depends upon x and generally is not known. Hence the practical 
application of (33) is often difficult. However, (33) does show explicitly that 
EjN’ = 0, iff(.x) E SN- ‘, i.e., the differential operation (31) will be exact for polyno- 
mials of degree <N- 1. 

Equation (32) is of primary importance, from both practical and analytical view- 
points. Calculations illustrating its computational advantages are given in Section 4 
below. The explicit, general expression (32) of the differential operator in a DO 
representation defined by an arbitrary mesh {xi} has other equivalent counterparts 
in the literature [41]. However, all these, like (32), are subsumed by the well- 
known Lagrangian differentiation formula (Ref. [40], p. 882, Eq. (25.3.2)). Another 
part of the literature dealing with DO methods involves transformation from a 
polynomial basis. This is discussed in the next section. 

3. THE DISCRETE ORDINATE METHOD 

The DO method was developed initially as a technique to solve integral equa- 
tions with the integral operator being replaced by a Gaussian quadrature formula 
and the resulting equation solved at the different quadrature points. The method 
appears to have been suggested by Wick [25], but was developed as a practical 
tool by Chandrasekhar [26] who used it to solve radiative transfer problems. In 
the context of kinetic theory a DO method may simply be viewed as an analysis of 
the Boltzmann equation at discrete points in velocity space. The same may be said 
of finite-difference methods. However, due to the piecewise nature of the latter we 
choose to exclude them from the DO classification in the present work. 

Some early applications in kinetic theory, primarily in the field of rarefied gas 
dynamics are discussed in Ref. [27,28-J. In Ref. 28 it is shown that in low-order 
approximation the DO method gave results in excellent agreement with half-range 
“moment” methods for the linearized steady Couette flow problem. In subsequent 
work, Huang and Giddens [29] and others [30, 311 used the DO method for 
one-dimensional operator equations obtained from the BGK kinetic equation. An 
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extension of the method to solve the non-linear Boltzmann equation for “‘pseudo- 
shock” relaxation is discussed by Wachman and Hamel [32]. The method is used 
extensively in neutron transport problems [25]. 

The DO method has also been used to study problems that arise in quantum 
mechanics 133-381. Here it is referred to as a “discrete variable representation,” 
and its connection to the Galerkin method (referred to as ““finite basis representa- 
tion” in these papers) has been noted [36-381. The more recent studies in 
mechanics 136-381 have shown the advantage of remaining completely i 
representation, the (surmountable j difficulties associated with extending the met 
to multi-dimensional operator equations, and the good agreement between 
resuhs of order N and results obtained by Galerkin methods of the same order. 

Following the extension of the DO method to include differential o 
[13. 391, Shizgal and co-workers have made extensive use of the method 
the Boltzmann equation for a wide range of problems [f&17]. In this work and 
also in Ref. [36638], the DO method is viewed as an approximation to the 
Galerkin method, where the DO representation of an operator is obtained by a 
unitary transformation of an orthogonal polynomial (Galerkin) representation 

We believe that it is more efficient to interpret the DO method as a collocation 
method. In fact, the collocation method outlined in Section 2 encompasses al? DO 
methods, with Eq. (13) defining a DO representation of the operator L. In 
particular, a DO method chosen such that the ordinates coincide with the nodes of 
a Gaussian quadrature, such as that of Shizgal and co-workers [l&-17] is an 
orthogonal collocation method with suitably chosen trial functions. This is what 
most usage of the term “discrete ordinate method’ in the literature refers to. Both 
the Galerkin and collocation aspects of the 0 method are considered in this 
section 

(a ) Transformation between Polynomial and DO Basis 

The set of polynomials {di(x)} is complete on i and hence any functionS(-w) on 
i can be expanded as follows: 

where 

fie’ = j C(x) tjJx)f(x) d-x 

I\-- 1 .A- I 

2 j;. ri;q+(xj)f(xj, = c T;,wyf(xj) 

;=o 

and T, is defined by Eq. (20). Hence if we define [ 131 

(36) 
j=O 
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that is, 

then Eq. (35) shows that 

f-if) = J-f . f”’ 7 (37) 

fj.“’ ” wyf(xi). (38) 

The matrix T can be interpreted as defining a transformation [ 131 between an “e 
basis” and ‘fbasis.” Equations (35b) and (38) become exact when f(x) E s”- ‘. 

Using expansion (34) in Equation (1) and choosing Ai = M’(x) di(x) as our 
weight function, we have from Eq. (5) 

Rj= j G(x) di(x) ‘vflf)e)Ldj(~) - g(x) dx. 1 (39) 
j=O 

These will be zero if 

L”’ . f”’ = p 
7 

where 

and 

g;” = j ]?(X) $bi(X) g(X) dx. (42) 

From Eq. (37) it follows that 

f”‘= T. fif’ 

and, similarly, 

g”’ = T . g(f). 

iW 

(41) 

Substituting for f(‘) and g(‘) into Eq. (40), we obtain 

L(f). f’f’ = g’f’, (44) 

where 

L(f) = T + . L@) . T. (45) 

Equation (45) defines the DO representation of L used by Shizgal and Blackmore 
[13] in terms of the polynomial representation L”‘. Thus we see that the DO 
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method as presented by Shizgal and Blackmore [13] is a Galerkin method with the 
choices Ti(-v) = 4i(x) and Ai = C(s) hi(x), followed by a unitary transformatim 
using the matrix T defined in Eq. (20). It is thus possible to calculate Li,!’ from a 
knowledge of LF’, as Shizgal and co-workers [l&17] do for the differential 
operator, but as will be pointed out in the next section, this is neither necessary nor 
desirable in general. 

(b) Orthogonal Collocation and the DO method 

Suppose Eq. (i ) is to be solved by an orthogonal collocation method with the 
collocation points being the roots of the polynomiai d:\-(x). Then it follows from 
Eq. (2) and (25j that a suitable choice of trial functions is given by Eq. (28j; ie., 

For this choice, the representation of the operator L is, from Eq. (14) 

with (xi, i=O, 1, . . . . N- l} being the roots of d,V(~~). Equation (47) is our dehni- 
tion of the discrete ordinate representation of the operator L. 

If we consider the general linear differential operator 

then it follows from Eq. (47) and the properties of I,(X) given in Section 2(d), &at 
the .DQ representation of (48) is 

L = c H,, ID”‘, (49) 
W! 

where 

(&& = H,!(Xj) 6, (50) 

and (D”), is the matrix resulting from T?Z applications of the matrix D,, defined by 
Eq. (32) (DO=Ij. 

As another example, consider the integral operator, 

where K denotes some kernel and the integral is over the interval I. For this 
operator, Eq. (18), (47), and (27) yield 
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To see how L, is related to LL!’ we use Eq. (25) to write dji(-x) as 

A- I 
(53) 

Note that there is no remainder term as 4j(~)~S’v-1. Substituting for dj(.x) from 
(53) into equation (41), replacing the integral by a sum and using equation (45), 
we see that the method of Section 3(a) for finding the DO representation of an 
operator is in general related to orthogonal collocation, through the relation 

(54) 

For the particular case of the differential operator, however, the relationship is 
exact, 

D!f)= !!l!& 
rl J rJ (55) wj 

Thus Eq. (23) may be written as 
A’ - I 

(Lp~)i _v 1 D!pjy. (56) 
i=O 

It is interesting that in the collocation approach to the DO method there has been 
no direct reference to the polynomials di(?c) (OG i<N- 1) that are orthogonal on 
I with respect to n(x), though the roots of the polynomial dY(,y) are used as the 
nodes. 

4. NUMERICAL CALCULATIONS AND DISCUSSION 

Equation (32) of Section 2(d) is exact and offers a means of calculating D, (or 
Ok”‘) directly from the polynomial nodes chosen. On the other hand, Shizgal and 
Blackmore [13] use the theory of Section 3(a) to calculate Dy’ indirectly, by first 
using E.q. (41) to calculate D(j’) and then making the transformation (45). Table I 

TABLE1 

Comparison of Computer Times in Minutes 
and Seconds for the Calculation of D!j” 

on VAX-111750 in the Case Where 4,(-y) Are the 
“Speed” Polynomials (G(x) =xk’, I= (0, co)) 

N 10 20 40 60 80 100 

Eq. (45) 2.82 4.67 14.10 37.06 1:19.25 2125.96 
Eq. (32) 1.53 2.52 6.07 11.82 19.79 29.54 
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shows the saving in computer time in the case where d;(x) are the speed polyno- 
mials [Il. 12j (K(x) =+?ePX’, I= (0, 1~ )). We see that as N increases from IO to 
100, direct calculation of DI;” goes from being approximately twice to five times 
faster than the indirect method of Shizgal and Blackmore [ 13,42 ]. 

Shizgal et nl. [l&17] consider the DO representation of the derivative operator 
to be the cornerstone of the DO method. Our view is that it is subsumed by he 
well-known L,agrangian interpolation formula for unequaly-spaced abscissas. 

The choice of the abscissas to coincide with the nodes of a Gaussian quadrature 
appears to generate highly accurate values of the derivatives and the practical 
implications of the work of Shizgal et al. are indeed significant. However, the prac- 
tice of choosing the nodes to be the roots of an orthogonal polynomial may in some 
instances be a disadvantage. In cases where boundary values are to be matched: i: 
is often desirable to include the end points of the interval as nodes. In a 
depending on the expected properties of the solution, it may be desirable t 
the nodes according to some other criterion. The properties of i,(x) in part (a) 
suggest this is possible. Furthermore, with the choice A,@) = 6(~ - -xi), Eq. (6) may 
be regarded as an approximation to Eq. ( 1) at the point .Y = .xj. The accuracy of the 
method then depends on how accurately CyceO” L,& approximates i&f).=,,. 

lackmore [ 131 have given a striking example of the accuracy of this 
approximation when L =d2/dAx” by using their method of determining J!?Y’ to 
calculate the second derivative of the function 

j”(x) = sin[3(sinh(x) + (1+ s)‘)], (OBxd lj. ,.q-yi :a, \ 

The nodes chosen were those of the 30-point Gauss-Legendre quadrature formula. 
Similar accuracy can be obtained with other choices of nodes. As indicated in 
Table II, even when the nodes are chosen to be equally spaced, high accuracy may 
be obtained, except near the ends of the interval, This is to be expected, since he 
error term given by Eq. (33) can be written as 

(Xi - .Yjj~ (58) 

j#r 

The factor njf i (-xi - .yj) indicates that if the nodes are evenly spaced, the error will 
in general be small for points near the middle of the interval, but not so small for 
points close to the ends. If possible, the nodes should be chosen so thai 
nj,; (x-~ - x,) is small for each i. The above example was repeated using the roots 
of the 28 th degree Chebyshev polynomial (appropriately scaled) together with the 
end points and we show the results in Table III. Although these nodes are not those 
of a Gaussian quadrature on the interval (0, l), the errors obtained are comparabie 
with those of Shizgal and Blackmore’s 30-point Gauss-Legendre results. Thus it 
may not be necessary to restrict the choice of nodes to those of a Gaussian 
quadrature formula to obtain a high degree of accuracy. 

The question of nodes differing from Gaussian quadrature points has been 
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TABLE II 

Accuracy of Numerical Differentiation for 30 Equally Spaced 
Nodes on (0, l), forf(x) Delined by (57) 

x f(x) ErrOX- 
b 

0.00000a+00 

0.34483a-01 

0.68966d-01 

0.10345a+oo 

0.13793dtOO 

0.1724latoo 

0.20690dtOO 

0.2413BdtOO 

0.27586d+OO 

0.31034dtOO 

0.34483atoo 

0.37931dtOO 

0.41379atoo 

0.4482EdtOO 

0.48276d+OO 

0.51724dtOO 

0.55172atoo 

0.58621dtOO 

0.62069d+OO 

0.65517dtOO 

0.68966dtOO 

0.72414dtOO 

0. 75862d+OO 

0.79310dtOO 

0.82759dtOO 

0.86207dtOO 

0.89655dtOO 

0.93103dtOO 

0.965524+00 

O.lOOOOd+Ol 

0.14112dtOO 

-0.17149atoo 

-0.47374d+OO 

-0.73258d+OO 

-0.91607d+OO 

-0.99763d+OO 

-0.96035dtOO 

-0.80098dcOO 

-0.53253a+oo 

-0.18505dtOO 

0.19632dtOO 

0.55613dtOO 

0.836228+00 

0.98539dtOO 

0.96967dtOO 

0.78138dtOO 

0.44467atoo 

0.155336-01 

-0.42511dtOO 

-0.78531a+00 

-0.98127a+oo 

-0.95833dtOO 

-0.70867dtOO 

-0.28020a+00 

0.22785dtOO 

0.68469dtOO 

0.96058d+OO 

0.96536d+OO 

0.68175dtOO 

0.18135dtOO 

-0.17371dtOZ 

0.85291dtOl 

0.365tlOdtOZ 

0.63737d+02 

0.86418dt02 

0.1009OdtO3 

0.10385a+03 

0.92946d+OZ 

0.67558dtOZ 

0.29249drOZ 

-0.17925dt02 

-0.67520dtOZ 

-0.13133ato3 

-O.l4055d+03 

-0.14742dtO3 

-0.12712dt03 

-0.79544dt02 

-0.10505dt02 

0.68206dt02 

0.14019dt03 

O.l8746d+03 

0.19471d+03 

0.15412dt03 

0.69273dt02 

-0.43084dtOZ 

-0.15500dt03 

-0.23329dt03 

-0.249018+03 

-0.18807dt03 

-0.59517dtOZ 

O.l6d-04 

-0.396-06 

0.244-07 

-0.26d-08 

0.42d-09 

-0.686-l 0 

O.lSd-IO 

-0.48d-11 

0.96d-12 

-0.23a-12 

-0.34a-12 

O.ZBd-12 

-O.ZZd-12 

0.23d-12 

-0.3Sd-12 

0.56d-12 

-0.53d-12 

0.64d-12 

-0.37d-12 

-0.474-12 

0.764-12 

-0.19d-11 

0.44d-11 

-o.lsa-10 

0.76d-10 

-0.40d-09 

0.298-08 

-O.ZSd-07 

0.39a-06 

-O.l7d-04 

’ Analytic value. 
b Analytic value minus numerical value from Eq. (32). 
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TABLE III 

Accuracy of Numerical Differentiation, Choosing the Nodes to Be 
the [Scaled) Roots of the 28th Degree Chebyshev Polymrial 

Plus x = 0 and x = 1, for the Same Case as Table II 

x f(x) f" x a 13rmrb 
0.00000a+00 O.14112d+00 -O.i737!d+OZ -0.92d-10 

0.785596-03 

0.706458-02 

0.195416-01 

0.3f306Od-01 

0.6238&-01 

0.922208-01 

0.12719dtoo 

0.16683dtoo 

C.21o66dt00 

0,258!4dtOO 

0.30966dtOO 

0.3615adtoo 

0.41625dtOO 

0.47196dtOO 

0.52804dt00 

0.58375dtOO 

0.63842dtOO 

0.69134dtOO 

0.74186dtOO 

0.78934dtOO 

0.833I7dtOO 

0.97292dtOO 

0.90778dtOO 

0.93751dtoo 

0.96194dtOO 

3.98046dtOO 

0.99294dtGO 

3.99921dtOO 

C.lOOOOdtOl 

0.13411dtOO 

0.777e4d-OI 

-0.354218-01 

-0.2038BdtOO 

-0.41842dtOO 

-0.6550EldtOO 

-0.86870dtOO 

-0.99218dtOO 

-0.94879dtOO 

-0.68265dtOQ 

-0.20325dtOG 

0.37?486+00 

0.85169dtOO 

0.99338atoo 

0.6899OdtOO 

0.47508d-0: 

-0.626066400 

-0.98551a400 

-0.85665dtoO 

-0.33304dtOO 

0.30897dtOO 

0.79550dtOO 

0.99447dtoO 

0.93257dtOO 

0.72319dtOO 

0.48425dtOO 

0.29514dtOO 

0.19420dtOO 

0.~8s35atoo 

-O.16822dtQ2 

-0.12363dto2 

-O.311OldtOl 

0.11386dt02 

0.31196dtO2 

0.55204dt02 

0.80053dtOZ 

0.9925edt32 

0,103:6dtO3 

0.82375dcU2 

0.3!3716+02 

-0.42i97aic2 

-0.11339dt03 

-0.14804dtfl3 

-0.115C!d403 

-o.l59ued+32 

0.1072OdtO3 

o.IeES5dt03 

O.!7990dt03 

ff.80293dtO2 

-0.62093dtoZ 

-0.18456dtO3 

-0.246366+03 

-0.24339at03 

-0.1979oat03 

-9.1392odtC3 

-0.90027dtO2 

-0.62994dtO2 

-0.595:7akot 

-C-478-13 

O.lSd-IO 

-').P4d-il 

0.496-11 

-0.306-i1 

0.2Pd-II 

-3.156-11 

C.!4d-I: 

-0.92d-12 

0.24d-12 

3.246-12 

-0.566-12 

O.?5d-12 

-o.I~a-:! 

O.lOd-11 

-0.85a-s2 

U.:2d-li 

-U.!Sd-ll 

3.13d-11 

-0.i7a-1P 

0.724-12 

-0.71d-12 

-0.156-12 

G.:la-8; 

-0.318-11 

0.51d-lt 

-9.14a-!o 

O.l7d-OS 

3.24d-09 

a.’ 4s in Table II. 
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addressed by several authors, for example, by Kourganoff [43] in connection with 
the integral equation of the Mime problem. Our remarks are of wider generality, 
applying to differential and integro-differential equations as well. Note that in 
certain radiative transfer problems [44] the use of Gaussian quadrature may be 
desirable to ensure that the angular scattering cross section accurately sums to the 
total cross section. 

5. CONCLUSION 

We have surveyed methods for numerical solution of linear operator equations 
and have shown that the discrete ordinate method is intimately related to the 
method of collocation. Expressions (32) give the general representation of the 
derivative operator, which avoids the unnecessary transformation from the polyno- 
mial basis employed elsewhere. The nodes of the mesh need not be the roots of an 
orthogonal polynomial set and can be chosen according to some other criteria. 

We intend to apply these results to a wide variety of physical problems in the 
near future, including turbulent dispersion in the atmosphere, gaseous discharges, 
plasma stability, and wave functions for quarks and relativistic electrons. 
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